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Abstract. This paper presents studies of the universal properties of strongly interacting Fermi
gases using Bragg spectroscopy. We focus on pair-correlations, their relationship to the contact
C introduced by Tan, and their dependence on both the momentum and temperature. We
show that short-range pair correlations obey a universal law, first derived by Tan through
measurements of the static structure factor, which displays a universal scaling with the ratio of
the contact to the momentum C/q. Bragg spectroscopy of ultracold 6Li atoms is employed to
measure the structure factor for a wide range of momenta and interaction strengths, providing
broad confirmation of this universal law. We show that calibrating our Bragg spectra using the
f -sum rule leads to a dramatic improvement in the accuracy of the structure factor measurement.
We also measure the temperature dependence of the contact in a unitary gas and compare our
results to calculations based on a virial expansion.

1. Introduction
Universality is a striking feature of certain classes of interacting Fermi systems. When the
range of the interparticle scattering potential r0 is much smaller than the mean interparticle
spacing n−1/3 and the s-wave scattering length a, which characterises elastic collisions is large
compared to n−1/3, the system may display universal properties. Here, universality means that
all dilute Fermi systems with sufficiently strong interactions behave identically on a scale given
by the average particle separation, independent of the details of the short range interaction.
Two component gases of fermionic atoms near a Feshbach resonance are an excellent system
in which to achieve this universal regime in a precisely controlled manner [1–3]. With the
discovery of universality in the Bose-Einstein condensate (BEC) to Bardeen-Cooper-Schrieffer
(BCS) crossover, ultracold Fermi gases near Feshbach resonances have become a central topic
in atomic physics [4–10].

Understanding these strongly interacting Fermi gases, however, can present significant
challenges for theorists [11]. As the scattering length becomes large it can no longer be treated as
a small parameter and perturbative theories, which have had wide success for weakly interacting
Bose gases, cannot be applied. In 2005 Shina Tan made dramatic progress by deriving several
exact relations valid through the BEC-BCS crossover, which relate the microscopic properties
of the constituent particles to bulk thermodynamic quantities [12–14]. These exact relations
are applicable in broad circumstances: zero or finite temperatures, superfluid or normal phases,
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homogeneous or trapped systems, and in few or many-body systems. Tan invoked a new quantity
in his theory, called the contact C. The contact is defined as

C = lim
k→∞

nkk
4 (1)

where nk is the momentum density as a function of the wavevector k. At large k, this density
profile has a 1/k4 dependence so the contact is a constant which depends on the strength of
the two-body interactions. A more physically intuitive picture of the contact was also given by
Tan as the number of closely spaced spin-up/spin-down pairs, i.e., C quantifies the likelihood of
finding two fermions with opposite spin close enough to interact with each other. In systems
with a large scattering length where the range of the interaction potential r0 is negligible,
this single parameter encapsulates all of the information required to determine the many-body
properties [15, 16]. C depends upon two quantities, the dimensionless interaction parameter
1/(kFa), where kF is the Fermi wavevector and the relative temperature of the system T/TF ,
where TF is the Fermi energy divided by Boltzmann’s constant. The contact C was first extracted
[17] from the number of closed-channel molecules determined through photo-association [8] and
Tan’s adiabatic and virial relations were very recently verified experimentally [18]. Both of
these studies investigated the interaction dependence of the C. We will generally refer to the
dimensionless contact I given by C/(NkF ), where N is the number of particles.

2. Structure factor in the unitary limit - a universal quantity
Tan’s exact analytic relations link various many-body quantities such as the total energy and
momentum distribution to the short-range parameter I. Short-range structure in a quantum
fluid depends upon the relative wave-function of the interacting particles, in this case fermions
in different spin states. In a two-component (spin-up/spin-down) Fermi gas this is given by
ψ↑↓(r) ∝ 1/r − 1/a, where a is the s-wave scattering length. Tan used this to show that, for
length scales r0 < r < 1/kF , the spin-antiparallel pair correlation function is given exactly by
Eq. (2) which includes the contact as a pre-factor [12]

g
(2)
↑↓ (r) =

C
16π2

(
1

r2
− 2

ar

)
. (2)

Such pair correlation functions are difficult to measure directly in ultracold gases; however,
it is possible to measure macroscopic quantities which depend on correlation functions in a
well defined way. A prime example is the static structure factor, S(k), which is given by the
Fourier transform of g(2)(r) (q = ~k is the probe momentum). In a two component Fermi
gas with an equal number of particles in each state N , the structure factor consists of two
components, corresponding to correlations between particles in the same state and particles in
different states S(k) = S↑↑(k) + S↑↓(k). When the momentum is much larger than the Fermi
momentum, particles in the same state will be uncorrelated and S↑↑(k � kF ) ' 1, so all variation
in S(k) will then be due to changes in S↑↓(k) [19, 20]. The Fourier transform of Eq. (2) yields
the following for S↑↓(k)

S↑↓ (k � kF ) =
I
4

kF
k

[
1− 4

πkFa

(
kF
k

)]
, (3)

which has a straightforward dependence upon I, the relative probe momentum k/kF , and the
interaction strength 1/(kFa). At unitarity, a → ∞, the second term vanishes and S(k) varies
linearly with kF /k. Rewriting Tan’s relation in this way points to a method to experimentally
verify Tan’s universal relation for pair correlations between spin-up/spin-down fermions since
the static structure factor can readily be measured using Bragg spectroscopy.
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3. Verification of Tan’s universal pairing law
Inelastic scattering experiments are a well established technique to probe both the dynamic
and static structure factors of many-body quantum systems [21]. Ultracold atoms are highly
amenable to inelastic scattering through Bragg spectroscopy which has previously been used to
measure both the dynamic [22, 23] and static structure factors [24, 25] of atomic Bose-Einstein
condensates. In ultracold Fermi gases Bragg spectroscopy was used to measure both the dynamic
and static structure factors over the BEC-BCS crossover, albeit at a single momentum [20]. The
ability to vary the momentum differentiates Bragg spectroscopy from rf spectroscopy [26, 27],
providing access to a broad range of the excitation spectrum and avoiding final state interaction
effects as no third atomic state is involved.

Conceptually, one can understand how Bragg spectroscopy probes the contact (the number
of closely spaced spin-up/spin-down pairs). The spatial period of the Bragg lattice (λBr = k−1)
sets the size scale being probed. Pairs, whose size is small compared to λBr can be scattered
as single particles with twice the atomic mass (2m). Varying the ratio k/kF we can map the
fraction of pairs within a particular size range 0 < r < λBr. At unitarity, these short-range pair
correlations grow linearly with λBr, Eq. (3).

To demonstrate the validity of Eq. (3) we perform measurements of S(k) for a range of
momenta (k/kF ) and at different values of the interaction parameter 1/(kFa). We start by
preparing clouds containing N ≈ 3× 105 6Li atoms in an equal mixture of the two lowest lying
ground states |F = 1/2,mF = ±1/2〉 evaporatively cooled in a single beam optical dipole trap
(λ = 1075 nm) at a magnetic field of 834 G [31]. Next, we adiabatically ramp up a second far
detuned laser (λ = 1064 nm) which intersects the first trapping beam at an angle of 74◦ forming
a crossed beam dipole trap. By appropriately selecting the intensities of each of the two trap
lasers we tune the mean harmonic confinement frequency of the crossed trap ω̄ over the range
ω̄ = 2π × (38− 252) s−1 while the aspect ratio, ωx,y/ωz, varies from 3.4 to 16. Controlling the
trap frequencies in this way allows us to tune the atom density and hence the Fermi wavevector
over a broad range. Once in the final crossed beam trap, we ramp the magnetic field to select
the scattering length a which gives the desired value of 1/(kFa). This allows us to tune kF and
1/(kFa) independently. The cloud is then held at the final magnetic field for a time τ � 10 ω̄−1

to reach equilibrium before applying the Bragg pulse and imaging at that magnetic field.
Bragg scattering is achieved by illuminating these 6Li clouds with two counter propagating

laser beams with a small frequency difference δ. This creates a standing wave which moves with
velocity δ/kBr where kBr = 2π/λBr and λBr = 671 nm is the wavelength of the light used for
Bragg scattering. Resonant Bragg scattering occurs when the energy difference between the two
beams is equal to the energy required to eject a particle from the cloud with momentum 2~kBr.
The lasers used for Bragg scattering are approximately 2 GHz red-detuned from the two ground
hyperfine states which is large compared to the ∼ 80 MHz splitting between the |1/2,±1/2〉
states. This means that both states are coupled approximately equally to the Bragg beams (to
within 4%).

To measure the static structure factor S(k) we begin by recording a Bragg spectrum. This
consists of measuring the momentum transferred to the cloud by the Bragg lasers as a function
of δ. The transferred momentum is directly proportional to the resultant centre of mass
displacement ∆X(k, δ) measured after 2 ms time of flight [20]. A Bragg spectrum for a unitary
gas is shown in the inset of Fig. 1 for k/kF = 8.5 as a function of the Bragg frequency δ. At
this momentum, the pair and free-atom excitations are clearly distinguished at frequencies of
∼ 150 kHz and ∼ 300 kHz, respectively. The Bragg pulse duration, 50 µs, is short compared to
the two-photon Rabi cycling period, ensuring that spectra are obtained in the linear response
regime.

The centre of mass displacement, ∆X(k, δ), is proportional to the convolution of the spectral
content of the Bragg pulse and the dynamic structure factor of the gas S(k, δ) [28]. The
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proportionality constant depends upon the two-photon Rabi frequency ΩBr which can be difficult
to measure accurately. Integrating ∆X(q, δ) over δ yields a number proportional to the static
structure factor, S(k) = ~N−1

∫
S(k, δ)dδ, but ΩBr remains unknown. We overcome the need

to find ΩBr by invoking the f -sum rule [21]: NEr =
∫
S(k, δ)δdδ, where Er = 2~2k2Br/m is the

two-photon recoil energy. As both S(k) and the f -sum rule involve N , we normalise the area
under each measured spectra using

S(k) =
2~k2Br

m

∫
∆X(k, δ)dδ∫
∆X(k, δ)δdδ

, (4)

where the constant involving ΩBr appears before each integral and therefore cancels. Equation
(3) is absolute, requiring only knowledge of the recoil energy, which can be determined with
high accuracy, leading to an accurate measure of S(k).
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Figure 1. Static structure factor in the BEC-BCS crossover. Experimental points were obtained
by integrating Bragg spectra normalized via the f -sum rule for k/kF = 4.8. Error bars are due
to shot to shot atom number fluctuations and uncertainties in measuring centre of mass. The
theoretical line is a zero temperature result, calculated by interpolating the near-resonance
structure factor Eq. (2) with the asymptotic results in the BCS and BEC limits. Inset: A
Bragg spectrum obtained at 1/(kFa) = 0 and k/kF = 8.5 showing centre of mass displacement
∆X(k, δ) versus Bragg frequency δ. Points are single shots and the line is a guide to the eye.
The pair (δ ∼ 150 kHz) and free atom peaks (δ ∼ 300 kHz) are clearly distinguished.

3.1. Interaction dependence
Bragg spectra reflect the composition of the gas, being dominated by bosonic molecules below
the Feshbach resonance, pairs and free fermionic atoms near unitarity, and free fermions above
resonance. To reveal the effects of interactions, scattering of trapped gases has to be considered
[20]. This can be complicated by elastic collisions between scattered and unscattered particles
which are hard to separate in the BEC-BCS crossover. Here, elastic collisions help as they
preserve centre of mass motion, so ∆X(k, δ) is a good measure of the Bragg signal throughout
the BEC-BCS crossover, independent of cloud shape and scattering length. We have previously
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measured Bragg spectra across the BEC-BCS crossover at a momentum of k/kF = 4.8 and
observed a smooth transition in S(k, δ) from being dominated by molecular excitations below
the Feshbach resonance to atomic excitations above resonance. From such spectra, we can obtain
S(k) using Eq. 4 as plotted in Fig. 1 which shows excellent agreement with the zero temperature
theoretical calculation. This shows that we can quantitatively measure pair correlations at a
given momentum using Bragg spectroscopy.

3.2. Momentum dependence
Next we come to the measurement of S(k) as a function of k/kF [29]. At unitarity we expect
S(k) to vary linearly with kF /k according to Eq. (2). Rather than changing k directly by
varying the angle between the two Bragg beams, we change kF = (48N)1/6

√
mω̄/~ by varying

ω̄ = (ωxωyωz)
1/3, the geometric mean frequency of the optical dipole trap. Universality allows us

to change the relative length scale being probed simply by changing the density of the gas. Using
the crossed beam optical trap described above we can tune ω̄ such that the Fermi wavevector
can be tuned anywhere over the range kF = 2.1 µm−1 - 5.3 µm−1, or k/kF = 3.5-9.1. A sequence
of Bragg spectra were obtained for gases at three values of 1/(kFa) = +0.3, 0.0 and -0.2, while
varying kF . From these, S(k) was extracted and the results are plotted in Fig. 2. The solid
lines are the prediction from Eq.(2) using the zero temperature contact with no free parameters.
The experimental points closely follow the theory, confirming the exact analytic dependence of
S↑↓(k) ∼= S(k) − 1 on q, Eq. (2). At unitarity 1/(kFa) = 0, the dependence on a vanishes and
a straight line fit (dashed line) shows the simple universal behavior of fermionic pairing. The
fitted slope of 0.75±0.03 is slightly below the zero temperature prediction of 0.81 which may be
due to reduced pairing at the finite temperature (T/TF = 0.10± 0.02 at unitarity) discussed in
the next section. This result is in good agreement with the contact evaluated from the equation
of state of a homogeneous gas measured by the ENS group [10]. At 1/(kFa) = +0.3 the data
depart from a straight line displaying the downward curvature consistent with the first order
term in Eq.(2). A similar upward curvature is seen at 1/(kFa) = -0.2. Our simple relation Eq.(2)
is seen to accurately describe S(k) on both sides of the Feshbach resonance demonstrating the
wide applicability of the Tan relations.

4. Temperature dependence of I
As discussed in section 1, the contact I depends on both the interaction parameter and the
relative temperature. Here we look at the latter dependence in a unitary Fermi gas where
the spin-up/spin-down static structure factor is given by S↑↓(k) = I

4
kF
k . Any variation in

the measured structure factor with temperature is then linearly related to the contact. For
this series of measurements we use a lower relative momentum of k/kF = 2.7 to enhance the
contribution of S↑↓(k) to S(k). This was achieved by reducing the angle between the two Bragg
beams to 49◦ which reduces the atomic recoil frequency to 51 kHz. The lower momentum
also means that all Bragg scattered atoms now remain trapped after the Bragg pulse as the
energy imparted to the atoms/pairs by the Bragg pulse is lower than the trap depth. This
makes possible a second means of determining S(k) from measurements of the increase in the
mean square cloud width to determine the energy imparted by the Bragg pulse. The details of
this measurement scheme will be published elsewhere [30], but here we note that this method
provides an alternative means to determine S(k) that we can compare to our measurements
of the momentum imparted by the Bragg pulse through centre of mass displacement. Figure
3 shows the measured structure factors (left axis) and the corresponding contact (right axis)
measured as a function of temperature. The different temperatures were obtained by evaporating
down to the lowest temperature and then releasing and recapturing atoms in the optical trap
and holding for 800 ms to allow rethermalisation. In this way we could repeatably vary
the temperature over the range 0.1 → 1TF while holding N and the trapping parameters
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Figure 2. Universal dependence of the static structure factor of a strongly interacting Fermi
superfluid. Measured and calculated static structure factor versus kF /k for 1/(kFa) = +0.3,
0.0, and -0.2. Bragg momentum k is fixed while kF is varied by changing the mean trapping
frequency ω̄. Vertical error bars are due to atom number fluctuations and uncertainties in
measuring the centre of mass and horizontal error bars are due to atom number fluctuations and
uncertainties in ω̄. Solid lines are the zero temperature theory and the dashed line is a straight
line fit to the 1/(kFa) = 0 data yielding a slope of 0.75± 0.03.
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Figure 3. Temperature dependence of the static structure factor and contact for unitary Fermi
gas. Open circles are the structure factors measured using centre of mass displacement as in
section 3 and filled circles are the structure factors measured via the energy transferred to the
cloud. The large open circle represents the zero temperature calculated contact and the dashed
red line is a theoretical calculation based on the quantum virial expansion [32].
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constant, by varying the time between release and recapture. Also shown in the figure are
the calculated zero temperature contact I = 3.26 (large red open circle) and finite temperature
contact determined via a virial expansion calculation (red dashed line) [32]. The contact decays
monotonically with increasing temperature reflecting the decay of pair correlations and agrees
well with the theoretical prediction. We note that the critical temperature for superfluidity
occurs around 0.2TF and, while the data points near the critical temperature are relatively
sparse, we do not observe any striking features near this point. It is also clear that pair
correlations at this momentum persist well above the critical temperature, up to nearly the
Fermi temperature. While this measurement only quantifies pair correlations at a particular
momentum it does indicate that the build up of such correlations is relatively gradual and
begins at high temperature.

5. Conclusions
In summary, we have shown that the structure factor of a strongly interacting ultracold Fermi
gas follows a universal law which is a direct consequence of Tan’s relation for the pair correlation
functions. Our measurements provide one of the first demonstrations of a broadly applicable
exact result for Fermi gases in the BEC-BCS crossover. We also provide the first measurements
of the temperature dependence of the contact in a unitary Fermi gas and find good agreement
with theoretical calculations based on the virial expansion. Bragg spectroscopic measurements
provide a useful means to quantify pairing and to quantitatively map the phase diagram of
the BEC-BCS crossover. In future work we will utilise low momentum Bragg spectroscopy to
probe pairing at momenta nearer the Fermi momentum which may offer insight into pseudogap
pairing.
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